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Abstract

Presently several equivalent characterizations of equi-

librium states are known, for example:

– the KMS condition,

– the Boltzmann-Gibbs prescription,

– the detailed balance condition.

Until recently no non-equilibrium analogue of these

conditions were known.

From the stochastic limit of quantum theory three

natural generalizations of these notions emerged in

the past 12 years:

- the local KMS condition

- the nonlinear Boltzmann-Gibbs prescription

- the dynamical detailed balance condition.

The fact that these three conditions are equivalent

is quite non trivial.

The present talk will describe the ideas and tools

used to prove the above mentioned equivalence.
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stationary ⊂ non equilibrium

Many interesting phenomena are stationary but non

equilibrium.

(i) mathematical stationarity: there is a well de-

fined dynamics (reversible or irreversible) which has

an invariant state.

(ii)physical stationarity: there is a flow of some

quantity with constant physical characteristics.

Examples:

– energy flow: heat conduction

– flow of charges: electrical conductivity

– flow of photons: laser

Flows are related to:

– direction of space

– direction of time.



L. Accardi, Y. G. Lu, and I. V. Volovich,

Quantum Theory and Its Stochastic Limit

Springer-Verlag (2002)

General scheme of the stochastic limit

technique for the Hamiltonian of the form

H(λ) = H0 + λHI (1)

– λ is real parameter,

– H0 is the free Hamiltonian

– HI is the interaction Hamiltonian.

Schrödinger equation in interaction picture

associated to the Hamiltonian H(λ)

d

dt
U

(λ)
t = −iλHI(t)U

(λ)
t (2)

HI(t) = eitH0HIe
−itH0.

idea of the stochastic limit approach:

take time the rescaling

t→ t/λ2 (3)



in the solution

U
(λ)
t = eitH0e−itH

(λ)
(4)

The rescaling (3) gives the rescaled equation

d

dt
U

(λ)
t/λ2 = −

i

λ
HI(t/λ

2)U(λ)
t/λ2 (5)

and the limit λ→ 0
is equivalent to λ→ 0 and t→∞ under the
condition that λ2t tends to a constant.
The limit

lim
λ→0

U
(λ)
t/λ2 =: Ut

captures the dominating contributions
to the dynamics

d

dt
Ut = −ihtUt, ht = lim

λ→0

1

λ
HI(t/λ

2) , U(0) = 1

(6)
the limit of the Heisenberg evolution

lim
λ→0

X
(λ)
t := limU

(λ)
t/λ2

†
XU

(λ)
t/λ2 = U

†
tXUt (7)

where X is an observable
belonging to a certain class: slow observables.



The initial state of the field is a mean zero gauge

invariant Gaussian state with correlations:(
〈a+
k ak′〉 〈a+

k a
+
k′ 〉

〈akak′〉 〈aka
+
k′ 〉

)
=

(
N(k) 0

0 N(k) + 1

)
δ(k−k′)

if N(k) depends on k through the energy density

ω(k)

N(k) = N0(ω(k)) ≡ N(ωk)

then the quotient

Re (gi|gj)−ω
Re (gi|gj)+

ω

=
〈A(gi)A

+(Stgj)〉∼

〈A+(gi)A(Stgj)〉∼
=
N(ω) + 1

N(ω)
(8)

where ∼ means Fourier transform, is independent

of the cut–off functions gi, gj.

Def.

The quotient (8) is called the (inverse) non equi-

librium Gibbs factor.



Defining

β̃(k) := lg
N(k) + 1

N(k)
> 0

one has

N(k) =
1

eβ̃(k) − 1

N(k) + 1

N(k)
= (eβ̃(k) − 1)

(
1

eβ̃(k) − 1
+ 1

)
= eβ̃(k)

Clearly

N(k) = N0(ω(k)) ≡ N(ωk)⇔ β̃(k) = β(ωk)

In the equilibrium it is equal to

and when function β( · ) is linear, one finds the

usual (inverse) Gibbs factor:

eβω(k)



We consider the forward and the backward Heisen-

berg evolution of an operator X belonging to the

slow degrees of freedom of the total system:

j
(F )
t (X) := U

†
tXUt for ; t > 0

j
(B)
t (X) := U−tXU

†
−t for ; t < 0

where Ut is the time evolution operator in interac-

tion picture.



After stochastic limit,

taking partial expectation of the field degrees of

freedom (denoted 〈·〉)
of the forward Heisenberg evolution

we obtain the forward master equations for observ-

ables

d

dt
〈j(F )
t (X)〉 = i[∆, 〈j(F )

t 〉]−
∑
ω∈F(

Γω−
(

1

2
{E†ωEω, 〈j

(F )
t (X)〉} − E†ω〈j

(F )
t (X)〉Eω

)
(

+Γω+

(
1

2
{EωE†ω, 〈j

(F )
t (X)〉} − Eω〈j(F )

t (X)〉E†ω
))

=: LF (〈j(F )
t (X)〉) , for t ≥ 0



and taking partial expectation of the field degrees

of freedom (denoted 〈·〉)
of the backward Heisenberg evolution

we obtain the backward master equations for ob-

servables

d

dt
〈j(B)
t (X)〉 = i[∆, 〈j(B)

t 〉] +
∑
ω∈F(

Γω−
(

1

2
{E†ωEω, 〈j

(B)
t (X)〉} − E†ω〈j

(B)
t (X)〉Eω

)
+

+Γω+

(
1

2
{EωE†ω, 〈j

(B)
t (X)〉} − Eω〈j(B)

t (X)〉E†ω
))

=: −LB(〈j(B)
t (X)〉) , for t ≤ 0



the dual master equation (for density matrices) is

written as

d

dt
ρS(t) = L∗ρS(t), t ≥ 0

Similarly, we introduce a master equation associ-

ated to LB as

d

dt
ρ

(B)
S (t) = −L∗Bρ

(B)
S (t), t ≤ 0

Both master equations have the same stationary

state ρS



The equilibrium state is characterized by the con-

dition:

L(X)− LB(X) = 2i[∆, X].

By direct computation we obtain the deviation from

the symmetry condition

tr(ρSxL(y)) = tr(ρSLB(x)y)

which characterizes equilibrium:

tr (ρSXL(Y ))− tr (ρSLB(X)Y ) =
∑
lm

XllYmm

(
ρll(Γ−,εl−εm + Γ+,εm−εl)− ρmm(Γ−,εm−εl + Γ+,εl−εm)

)
=
∑
lm

XllYmmθ(εl−εm)(J1,lm+J2,lm)−θ(εm−εl)(J1,ml+J2,ml)

where

Xll := 〈εl|X|εl〉, Ymm := 〈εm|Y |εm〉, ρll = 〈εl|ρS|εl〉.

Choosing

X = |εa〉〈εa| =: Pa, Y = |εb〉〈εb| =: Pb,



one obtains

tr (ρSPaL(Pb))− tr (ρSLB(Pa)Pb) =

= θ(εa − εb)(J1,ab + J2,ab)− θ(εb − εa)(J1,ba + J2,ba)

The left hand side describes the balance between

two processes: transition from |εa〉 to |εb〉 and its

converse in stationary state ρS.



Slow degrees of freedom and micro-current

Consider the field number density operator:

nk = a
†
kak k ∈ Rd

Its Heisenberg evolution after the stochastic limit

U
†
t nkUt

describes the time evolution of the densities of field

particles.

Thus its derivative is the number density current.

Its evolution is described by the Langevin equation

d

dt
U
†
t nkUt = white noise Hamiltonian equation

From this equation, taking partial expectation of

the field degrees of freedom (denoted 〈·〉) we find

the following dynamical balance equation:

d

dt
〈U†t nkUt〉 = 2

∑
ω∈F

δ(ω(k)− ω)

trS
((
γ−,ω(k)E†ωEω − γ+,ω(k)EωE

†
ω

)
ρS(t)

)



where the time evolution of ρS(t) obtained by solv-

ing the master equation.

Since this equation is in distribution sense, it im-

plies that momentum space is foliated into reso-

nant energy shells and the equation is equivalent

to:

0 =
∑
ω∈F

δ(ω(k)− ω)

(
d

dt
〈U†t nkUt〉 − 2trS

(
γ−,ω(k)E†ωEω − γ+,ω(k)EωE

†
ω

)
ρS(t)

)
But the energy shells are disjoint and discrete.

This implies the following result.



Theorem. If:

(i) The Liouville spectrum of the system Hamilto-

nian has no accumulation points.

(ii) The energy density function k ∈ Rd 7→ ω(k) is

”regular enough”.

Then the above equation is equivalent to the fol-

lowing dynamical detailed balance equation:

∀ω ∈ F ;
d

dt
〈U†t δ(ω(k)− ω)nkUt〉 =

= −2trS
[(
γ−,ω(k)E†ωEω − γ+,ω(k)EωE

†
ω

)
ρS(t)

]
δ(ω(k)−ω)

(iii) If ω(k) is positive, then the sum can be re-

stricted to the set F+ of positive Bohr frquencies.



Interpretation of the dynamical detailed balance
(DDB) equation:

∀ω ∈ F+ ;
d

dt
〈U†t δ(ω(k)− ω)nkUt〉 =

= −2trS
[(
γ−,ω(k)E†ωEω − γ+,ω(k)EωE

†
ω

)
ρS(t)

]
δ(ω(k)−ω)

For each positive Bohr frequency and momentum

ω = εm − εn ∈ F+ ; k ∈ Rd

define the average number (ω, k)–micro-current by:

d

dt
〈U†t δ(ω(k)− ω)nkUt〉 =: Jω(t, k)

The DDB condition is then:

Jω(t, k) = 2trS
((
γ−,ω(k)E†ωEω − γ+,ω(k)EωE

†
ω

)
ρS(t)

)
Thus the number density current has a fine struc-
ture in terms of (ω, k)–micro-currents:

d

dt
〈U†t nkUt〉 = 2

∑
ω∈F

δ(ω(k)− ω)Jω(t, k)

The term microscopic here refers to the fact that
we define one current for each atomic frequency .



Stationary states under the DDB condition

Corollary. If ρS is any stationary state under the

forward master equation

ρS(t) = ρS ; ∀t

then, for each momentum k ∈ Rd and positive Bohr

frequency ω ∈ F+, the (ω, k)–micro-current is con-

stant.

In fact:
d

dt
〈U†t δ(ω(k)− ω)nkUt〉 =

= 2trS
((
γ−,ω(k)E†ωEω − γ+,ω(k)EωE

†
ω

)
ρS
)

and the right hand side does not depend on t.



Conclusions.

(i) Under general conditions, for any state ρS of

the system, the flow of quanta between the modes

of the field (environment) and the system is split

into a family of independent microscopic currents,

one for each positive Bohr frequency ω.

(ii) If ρS is any stationary state of the system un-

der the forward master equation then any of these

microscopic currents is constant.

The sign of this constant determines

the direction of the flow:

– from field to system (pumping)

– from system to field (dissipation).

Many flows:

– flow of time

– (micro)–flows of quanta ∀(ω, k)

– (micro)–flows of energy ∀(ω, k)

– . . .

Which physical parameters distinguish the different

regimes?



d

dt
〈U†t δ(ω(k)− ω)nkUt〉 =

= 2trS
((
γ−,ω(k)E†ωEω − γ+,ω(k)EωE

†
ω

)
ρS
)

The micro–susceptibilities (transition rates) are

γ−,ω(k) = γω(k)(N(k)+1) , γ+,ω(k) = γω(k)N(k)

γω(k) = π|gω(k)|2 > 0

γ−,ω(k) = γω(k)(N(k) + 1) > γ+.ω(k) = γω(k)N(k)



Generic system Hamiltonians

If the system Hamiltonian is generic
(i.e. its Liouville spectrum is non degenerate),
then for each positive Bohr frequency

0 < ω = εm − εn ∈ F

one has

Eω = |εn〉〈εm|

Thus

EωE
∗
ω = |εn〉〈εn| ; E∗ωEω = |εm〉〈εm|

Therefore
d

dt
〈U†t δ(ω(k)− (εm − εn))nkUt〉 =

= 2(γ−,εm−εn(k)ρmm − γ+,εm−εnρnn)

where

γ−,ω(k) = π|gω(k)|2 (N(k;β, µ) + 1)

γ+,ω(k) = π|gω(k)|2 N(k;β, µ)



Theorem 1 The following are equivalent:

(i) ρ satisfies the local (H,β)–KMS condition

ρ̃ (xy(t+ iβ(H))) = ρ̃ (y(t)x) , ∀x, y ∈ B(H) , ∀t ∈ R
(9)

(ii) e−β(H)H is trace class and

ρ = ρβ,H := Zβ
−1e−β(H)H , Zβ := tr

(
e−β(H)H

)
(10)

With these notations the local KMS condition can

be re–written in the more intuitive form:

ϕ
(
xe−β(H)Hy(t)eβ(H)H

)
= ϕ (y(t)x) ; ∀x, y ∈ B(H) , ∀t ∈ R

(11)

Differentiating (11) at t = 0 one finds

ϕ
(
xe−β(H)Hδ(y)eβ(H)H

)
= ϕ (δ(y)x) (12)



where

δ(y) := i[H, y] ; y ∈ B(H)∩Domain(i[H, · ])

is the infinitesimal generator of the Heisenberg dy-

namics.

The identity (12) gives the infinitesimal form of the

local KMS condition.

Definition 1 Let L be a Markov generator, ρ a

state on B(H), and (H,β). The pair (ρ,L) is said

to satisfy the infinitesimal form of the irreversible

(H,β)–KMS condition

tr(ρxe−β(H)HL(y)eβ(H)H) = tr(ρL(y)x) (13)

for all x ∈ B(H) and y ∈ Domain(L) for which the

left hand side of (13) is well defined.


