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General statement

The irreversible dynamics can be useful
for controlling quantum systems

it can steer all initial states
into the same final state

hence producing controls optimal
simultaneously for all system states.



Concrete problems

• How to physically produce arbitrary pure and mixed density
matrices?

• How to realize complete density matrix controllability of
quantum systems?

• How to physically produce arbitrary all-to-one Kraus maps?

[maps Φρf : Cn×n → Cn×n that are completely positive,
trace preserving and such that for any density matrix ρ:

Φρf (ρ) = ρf ].



Motivation

• Fundamental interest:
Finding the limits of our ability
to manipulate quantum systems.

• Possible practical application:
Quantum computing with mixed states
(Aharonov, Kitaev, Nisan, Tarasov, Zoller, etc.).



Quantum control: outline

Active field of modern research with ≈ 1300 papers per year.

Applications:

• selective atomic or molecular excitations

• laser-assisted control of chemical reactions

• laser-induced molecular alignment

• quantum gate generation for quantum computing

• and many other applications



Coherent quantum control

• Dynamics: Schrödinger equation

dUt

dt
= −i [H0 + V ε(t)]Ut , ρT (ε) = UTρ0U

†
T

• Coherent control: tailored laser field ε(t)

• Objective: J[ε] = J(UT (ε))→ max /min



Examples of objectives

• Maximize expectation of a desired system observable O

J1[ε] = Tr[ρT (ε)O]→ max

• Prepare a desired state ρtarget

J2[ε] = ‖ρT (ε)− ρtarget‖ → min

• Produce a desired unitary gate Utarget

J3[ε] = ‖UT (ε)− Utarget‖ → min



Unitary control and reversible dynamics

• The dynamics is unitary and hence reversible.

• Limitation: for ρi 6= ρ′i

UTρiU
†
T 6= UTρ

′
iU
†
T

Optimal controls are usually different for different initial
states:

unitary control is “not robust” to variations
of the initial system state.



Open systems: outline

• Open systems are those that interact with their environments.

• Dynamics: master equation

dρt
dt

= −i [H0, ρt ] + L(ρt), ρ0 = ρi

• Weak couping limit: Bogoliubov, van Hove, Spohn, Lebowitz,
Accardi, Lu, Volovich, etc.

• Low density limit: Dümcke, Spohn, Alicki, Accardi, Lu,
Pechen, Volovich.

• Existence under some conditions of a stationary state ρst such
that for all ρi,

ρi → ρt → ρst

Such dynamics is irreversible.



Weak coupling limit

• Hamiltonian Hλ = H0 + λQ ⊗ (af + a+f )

• Evolution Uλ(t) = e itH0e−itH

• Weak coupling limit:

λ→ 0, t → +∞, λ2t = τ = const

System dynamics: ρτ = lim
λ→0

TrE[Uλ(t)(ρ0 ⊗ ωE)U†λ(t)]

Total dynamics: Uτ = lim
λ→0

Uλ(τ/λ2)

• Master equation: many derivations.

• QSDE for Uτ : Accardi, Lu, Volovich (Book “Quantum theory
and its stochastic limit”, 2002).



Low density limit

• Hamiltonian H = H0 + Q ⊗ a+f ag + Q† ⊗ a+g af

• Gaussian environment

ωE(a+k ak ′) = εnkδ(k − k ′)

• Low density limit:

ε→ 0, t → +∞, nt = τ = const

• Master equation: Dümcke using BBGKY hierarchy (1984)

• QSDE for Uτ : Accardi, Lu, Alicki, Pechen, Volovich



Incoherent control

• Master equation

dρt
dt

= −i [H0 + Vu(t), ρt ] + Lu,nω(ρt)

• Controls:
• Coherent light with intensity u(t).

• Incoherent environment with spectral density nω.

Ref.: Pechen, Rabitz, Phys. Rev. A 73, 062102 (2006)



Control by incoherent light

• Superoperator produced by incoherent light:

Lnω(ρ) =
∑
i<j

Aij [(nωij + 1)LQij
(ρ) + nωijLQji

(ρ)]

LQ(ρ) = 2QρQ† − Q†Qρ− ρQ†Q,

Qij = |i〉〈j |, Aij ≥ 0

• Control: spectral density of incoherent light nω ≥ 0.



Main result:
Engineering non-degenerate density matrices

The irreversible dynamics can be used to produce all
non-degenerate states ρf =

∑
pi |φi 〉〈φi | via the following scheme:

1. Incoherent stage. Using special nω, create the mixed state
ρ̃f =

∑
pi |i〉〈i | diagonal in the basis of H0 (find such nω that Lnω

has ρ̃f as the stationary state). The state evolves as ρi → ρt → ρ̃f .

2. Coherent stage. Using special u(t), create a unitary evolution
transforming ρ̃f → ρf (standard coherent control).

This control scheme evolves all initial states into the same ρf .

Ref: Pechen, Engineering arbitrary pure and mixed

quantum states, Phys. Rev. A 84, 042106 (2011)



Property 1: Complete density matrix controllability

• 1. Pure state controllability:
|ψi〉 → |ψf〉; |ψi〉 and |ψf〉 are any pure states

• 2. Density matrix controllability:
ρi → ρf ; ρi and ρf have the same spectrum

• 3. Complete density matrix controllability (CDMC):
ρi → ρf ; ρi and ρf are any density matrices:
the strongest degree of quantum state control:

3⇒ 1, 2

Result: A combination of the irreversible incoherent control and
the reversible coherent control can approximately realize complete
density matrix controllability for a wide class of quantum systems.



Property 2: Production of all-to-one Kraus maps

Definition. A Kraus map is a completely positive trace preserving
linear map Φ : Cn×n → Cn×n.

Definition. An all-to-one Kraus map Φρf is a Kraus map such that
Φρf (ρi) = ρf for all ρi.

Ref: Wu, Pechen, Brif, Rabitz, J. Phys. A 40, 5681 (2007)

Result: The combination of incoherent and coherent controls nω
and ε(t) can approximately produce any all-to-one Kraus map Φρf .

Ref: Pechen, Engineering arbitrary pure and mixed

quantum states, Phys. Rev. A 84, 042106 (2011)



Example: Calcium atom

ρt =
1

2

[
I + rx(t)σx + ry (t)σy + rz(t)σx

]

Figure: (From Phys. Rev. A 84, 042106 (2011). Copyright by the
American Physical Society, 2011.) Dash line is for ‖ρt − ρ̃f‖ and solid
line for ‖ρt − ρf‖.



Conclusions

Irreversible dynamics can be used for a robust engineering of pure
and mixed quantum states.

Properties:

• Robustness to variations of the initial state

• Realization of the complete density matrix controllability

• Production of all-to-one Kraus maps
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