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H.Poincaré stressed that in statistical

mechanics there is a fundamental

contradiction: reversibility in assumptions

and irreversibility in conclusions.



Differentiable measures.

Definition 1. A measure ν is called C-

differentiable along a vector field h if there

exists a measure ν ′
h such that for every

u ∈ C the following formula of integration

by parts holds:∫
u′hdv = −

∫
udν ′

h.



If ν ′
h ¿ ν then the corresponding Radon-

Nykodym derivative is called logarithmic

derivative of ν along h and is denoted by

βν
h.



Symplectic locally convex space (LCS):

(E, I), E — LCS , I : E ′ → E, I∗ = −I .

Hamilton system (E, I,H).

Hamilton equation:

f ′(t) = IH′f (t).



Liouville equation w.r.t. functions:

∂F

∂t
(t) = LH(F (t));

Liouville operator: (LHΦ)(x) =

{Φ,H}(x);

Poisson bracket: {·, ·},

{Φ, Ψ}(x) = Φ′(x)(I(Ψ′(x))).



Liouville equations w.r.t. measures.

If G is a finite-dimensional factor space of E, then AG(E)

is the inverse image of the σ-algebra of the Borel subsets of

G w.r.t. the canonical mapping E → G.

A(E) = ∪G∈GAG(E).

Cylindrical measure on E: ν : A(E) → R
+,

if G ∈ G then the restriction of ν to AG(E) is σ−additive.

The set of all cylindrical measures: M(E).

G-cylindrical functions and cylindrical functions.



A measure ν ∈ M(E) is differentiable along h ∈ E, if there

exists a function βν(h, ·) on E, which is called logarithmic

derivative of ν along h, for which
∫

E
f(x)βν(h, x)ν(dx) =

−
∫

E
f ′(x)hν(dx) for any cylindrical function that is

differentiable along h and bounded together with f ′(·)h. If

k : E → E is a vector field then

βν
k (x) = βν(k(x), x) + trk′(x)

. The measures βν(h, ·)ν и βν
k (·)ν are called derivatives of ν

along h and k and denoted by ν ′h и ν ′k.



A Liouville theorem

Proposition 1. If a vector field k is Hamiltonian then

βν
k (x) = βν(k(x), x)

.

Proposition 2 (Liouville theorem). If F — is a canonical

transformation, ν ∈ M(E), νF is the image of ν w.r.t. F−1,

then

d(νF )

dν
(x) = exp(

∫ 1

0

βν(F ′
1(t, x),F(t, x)dt),

where F : [0, 1] × E → E is differentiable w.r.t. the first

argument and F(0, x) = x; F(1, x) = F (x)



Liouville’s equation for measures.

Definition. Liouville’s equation for

measures on the phase space E is the

equation

∂ν

∂t
(t) = L∗

H(ν(t))

w.r.t. functions of real variable taking

values in a space of measures on E; here

L∗
H is the operator in a space of measures.



3. Equations w.r.t. finite-dimensional distributions.

Let there exist a symplectic basis B = {ek : k = 1, 2, ...}

in E; moreover let there exist a (pre)Hilbert structure and

elements B form an o.n. basis. Finally we assume that span

of every finite family of elements from B is equipped with

the Lebesgue measure. For any finite family {ek1
, ..., ekn

}

of elements from B, let Fk1,...,kn
be its span, Gk1,...,kn

be

the symplectic factor space of E\F c
k1,...,kn

where F c
k1,...,kn

is

the closure of the span of elements of B not belonging to

{ek1
, ..., ekn

}. Let G(B) be the collection of all such factor

spaces.



The Liouville equation w.r.t measures on E is equivalent to

the system of equations with respect to restrictions of the

measures to subalgebras AG(E), G ∈ G(B).

But this system is equivalent to the Bogoliubov equations

only if E is finite-dimensional.

For any µ ∈ M(E) and for any {ek1
, ..., ekn

} ⊂ B let f
µ
k1,...,kn

be the corresponding density of the probability on Gk1,...,kn
.



Theorem 2. Let ν ∈ M(E),

{ek1
, ..., ekn

}, {er1
, ..., erm

} ⊂ B, let the Hamilton

function H be Gr1,...,rm
-cylindrical. Denote by hr1,...,rm

the

corresponding vector field on E, hr1,...,rm
= I(H′(·)). If

{er1
, ..., erm

} ⊂ {ek1
, ..., ekn

}, then

f ν′h
k1,...,kn

(x) = (f ν
k1,...,kn

)′(x)hr1,...,rm
(x), x ∈ Gk1,...,kn

;

if {es1
, ..., esp

} = {er1
, ..., erm

}\{ek1
, ..., ekn

} 6= ∅, then

f ν′h
k1,...,kn

(x) =
∫

(f ν
{r1,...,rm}∪{k1,...,kn}

)′s1,...,sp
(...xs1

, ..., xsp
...) ·

hr1,...,rm
(...xs1

, ..., xsp
...)dxs1

...dxsp
,

here (·)′s1,...,sp
is the derivative along Gs1,...,sp

.



Bogoliubov type system of equations with respect

to probability densities. Let H =
∑

Hr1,...,rn
where

Hr1,...,rn
are Gr1,...,rn

-cylindrical function and let hr1,...,rm
=

I(H′
r1,...,rm

(·)).

Theorem 3. A M(E)-valued function ν(·) is a solution

of the Liouville equation iff the functions t 7→ gr1,...,rn
(t),

defined by gr1,...,rn
(t) = f

ν(t)
r1,...,rn

satisfies the following infinite

system of equations:

g′k1,...,kn
(t)(·) =

∑ ∫
(g{r1,...,rm}∪{k1,...,kn}(t))

′
s1,...,sp

(...xs1
, ..., xsp

...)·

hr1,...,rm
(...xs1

, ..., xsp
...)dxs1

...dxsp
,



the sum is taken over all finite sets {r1, ..., rm} of natural

numbers and {s1, ..., sp} = {r1, ..., rm}\{k1, ..., kn}; if

{s1, ..., sp} = ∅ then we assume that the symbol of

integration is absent.



Generalized Bogoliubov equations

Let the operator L∗
H be defined on a space M∞(E) of

infinite measures on E. The integrals are defined to be the

limits of sets of integrals over subspaces {Fr1,...,rn
}. If the

measures on the subspaces {Fr1,...,rn
} are defined by the

densities ψr1,...,rn
then we say that the family of functions

{ψr1,...,rn
: {r1, ..., rn} ⊂ N} defines a measure ν on E. The

family of functions is called adapted if for any {r1, ..., rn}

and its proper subset {r1, ..., rk},

ψr1,...,rk
(x1, ..., xk) = lim 1

vol(V )

∫
V

ψr1,...,rn
(x1, ..., xn)dxk+1...dxn

if vol(V ) → ∞; here V is the centered ball in Frk+1,...,rn
and

vol(V ) is its Lebesgue measure.



Theorem. For any {r1, ..., rn} let gr1,...,rn
be a function

of real variable taking values in the space of bounded

nonnegative continuous functions on Fr1,...,rn
and let for any

t the family gr1,...,rn
(t) is adapted and define the unique

measure ν(t) on E. Then ν(·) is a solution of the Liouville

equation for measures if the family gr1,...,rn
is the solution of

the following system of equations:

g′k1,...,kn
(t)(·) =

∑∞
m=1(

∑
{r1,...,rm} ⊂{k1,...,kn}

(gk1,...,kn
(t))′(·)hr1,...,rm

(·)+∑
{j1,...,jp}={r1,...,rm}∩{k1,...,kn}

limN→∞
1

Nm−p

∑
{r1,...,rm}\{k1,...,kn}∩{1,...,N}∫

(g{r1,...,rm}∪{k1,...,kn}(t))
′
s1,...,sm−p

(...xs1
, ..., xsm−p

...) ·

hr1,...,rm
(...xs1

, ..., xsm−p
...)dxs1

...dxsm−p
.



Definition 1. The Wigner function WT generated by a

density operator (=state) T is defined by

(Tϕ)(q) =

∫
P

∫
Q

WT (
q1 + q

2
, p)e−ip(q1−q)ϕ(q1)dq1dp

=

∫
Q

ρT (q, q1)ϕ(q1)dq1. (1)



Definition 2. The Wigner function WT generated by a

density operator T given by an integral kernel ρT is defined

by

WT (q, p) =
1

(2π)n

∫
Q

ρT (q −
1

2
r, q +

1

2
r)eirpdr.

As T is selfadjoint its kernel ρ is Hermitian and hence the

range of WT is in R.



Definition 3. The Wigner function is the integral kernel of

the linear functional F 7→ trT F̂ on the vector space of

Weyl’s symbols of (bounded) pseudodifferential operators

in L2(Q).

trT F̂ =

∫
P

∫
Q

WT (q, p)F (q, p)dqdp. (2)



Definition 4. The Weyl operator W(h) in L2(Q), generated

by h ∈ E, is defined by: W(h) = e−iĥ. The Weyl function

Ŵ generated by a state T is the function on E, defined by

ŴT (h) = trTW(h).

The Wigner function WT is the inverse Fourier transform of

the Weyl function:

WT (q, p) =
1

(2π)n

∫
P

∫
Q

ei(qp̄+pq̄)WT (q̄, p̄)dq̄dp̄.



For quantum systems with quadratic Hamiltonians the

evolution of the Wigner functions coincides with the

evolution of the density of a probability distribution on

the phase space of the corresponding classical Hamiltonian

system.



Wigner measures.

Let E = Q × P , where the LCS Q and P are such that

P = Q∗ and Q = P ∗; hence E∗ = P × Q and the mapping

J : E → E∗, (q, p) 7→ (p, q) is an isomorphism. Let also the

mapping I : E∗ → E be defined by I(p, q) = (q,−p). The

LCS Q (resp. P ) is called the configuration space (resp.,

the momentum space) of the Hamiltonian system (E, I,H).

If q1, q2 ∈ Q, p1, p2 ∈ P then the value that the linear

functional (p1, q1) = J(q1, p1) takes at the element (q2, p2) is

denoted by by p1q2+q1p2. We assume that the Hilbert space

H of the corresponding quantum system is the complex

space L2(Q, µ) where µ is a P -cylindrical measure on Q;

in order to define infinite-dimensional pseudodifferential



operators we assume that this is a Gaussian measure and

use the ideology of the Hida White noise analysis calculus.

Nevertheless this measure does not appear in the final

formulae. Let the symbol T denote the von Neumann density

operator (=trace class positive operator in H whose trace is

equal to one) that defines a state of the system, and let ρT

denote the integral kernel of the density operator.

If η is a (X∗)-cylindrical measure on a LCS X and D(η)

is the collection of all vectors along which the measure

η is differentiable then the generalized density of η is a

scalar function Fη on D(η) whose logarithmic derivative

along any h ∈ D(η) is equal to βη(h, ·). Even for Gaussian

measures the generalized density is defined only up to a



multiplicative constant. One can show that if η is the

Gaussian measure whose Fourier transform η̃ is defined by

η̃(z) = exp (−1
2〈zB(z)〉), where B is a linear mapping of

X∗ into X, then Fη(x) = C exp (−1
2〈xB−1(x)〉). This result

shows that the Gaussian measure can be defined by its

generalized density. Below we use the generalized density of

the Gaussian measure in order to define pseudodifferential

operators in L2(Q, µ).

Let the measure µ be the Gaussian measure defined by its

generalized density as follows: Fµ(q) = exp(−1
2〈qB

−1(q)〉)

where B ∈ L(P, Q) and let ν be a Q-cylindrical Gaussian

measure on P defined by Fν(p) = exp(−1
2〈q(B

∗)−1(q)〉). It

is well known that if Q and P are Hilbert spaces then µ and



ν are σ-additive if and only if B is a (positive) trace class

operator.

For each "good enough" scalar function (we will not

formulate the corresponding analytical assumptions) H on

E(= Q × P ) the symbol F̂ denotes the pseudodifferential

operator in L2(Q, µ) (which is supposed to be essentially

selfadjoint), whose Weyl symbol is H. This means that if

ϕ ∈ domĤ(⊂ L2(Q, µ)), then

(Ĥϕ)(q) =

∫
P

∫
Q

H(
q1 + q

2
, p)e−ip(q1−q)ϕ(q1)(Fµ(q))

− 1

2

(Fµ(q1))
− 1

2 (Fν(p))−1µ(dq1)ν(dp).

The integral ar r.h.s. is defined as follows:



∫
P

∫
Q
H(q1+q

2 , p)e−ip(q1−q)ϕ(q1)(Fµ(q))
− 1

2

(Fµ(q1))
− 1

2 (Fν(p))−1µ(dq1)ν(dp)

= limn→∞ cn

∫
Pn

∫
Qn

H(q1+q
2 , p)e−ip(q1−q)ϕ(q1)(Fµ(q))

− 1

2

(Fµ(q1))
− 1

2 (Fν(p))−1µ(dq1)ν(dp), where

c−1
n =

∫
Pn

∫
Qn

e−ip(q1−q)(Fµ(q))
− 1

2 (Fµ(q1))
− 1

2 (Fν(p))−1µ(dq1)ν(dp)

and Qn × Pn = Fk1,...,kn
; we assume that for any n

the subspace Fk1,...,kn
is contained in the domain of the

integrands of the latter finite-dimensional integrals and use

the regularization, of finite=dimensional integrals, which are

defined by the following way.

If f ∈ Lloc
1 (Rn), then we say that the integral

∫
Rn f(x)dx



exists if for any ϕ ∈ D(Rn), for which ϕ(0) = 1, the

limit lima→∞

∫
Rn ϕ(ax)f(x)dx exists and then by definition∫

Rn f(x)dx = lima→∞

∫
Rn ϕ(ax)f(x)dx (the definition does

not depend on the choice of ϕ).

For any h ∈ E the symbol ĥ denotes the pseudodifferential

operator in L2(Q), whose Weyl symbol is Jh(∈ E∗); in

particular if h = q + p(= (q, p)) then ĥ = p̂ + q̂. Let

us mention that if q0 ∈ Q then q̂0 is the operator of the

momentum in the direction of q0 (but not of the coordinate).

Remark 9 Let Ē = {ĥ : h ∈ E}; then the mapping

F− : Jh 7→ ĥ, E∗ → Ē is a liner isomorphism (we assume



that Ē is equipped with the natural structure of a vector

space). The extension of F− to a linear mapping, of the

space generated by E∗ and the function on E whose values

at each points are equal to one, into the space of operators in

L2(Q, µ), defined by the assumption that the image of this

function is the multiplication by i, is called the Scrödinger

representation of the canonical commutation relations.

Definition 3. The Weyl operator W(h) generated by h ∈

E is defined by: W(h) = e−iĥ. The Weyl function WT

corresponding to the state (=density operator) T of the

quantum system, whose Hilbert space is L2(Q, µ), is the



function on E, defined by

WT (h) = trTW(h).

Definition 4. The Wigner measure WT generated by the

state (=density operator) T of the quantum system, whose

Hilbert space is L2(Q, µ), is the image, with respect to the

mapping J−1 : E∗ → E, of the E-cylindrical measure on E∗

whose Fourier transform is the Weyl function. This means

that ∫
Q×P

ei(p1q2+q1p2)WT (dq1dp1) = WT (q2, p2).

Remark 10. One can show that the Wigner measure can

also be defined as the integral kernel of the linear functional



F 7→ trT F̂ on the vector space of the Weyl symbols of

(bounded) pseudodifferential operators in L2(Q, µ). This

means that for any such Weyl’s symbol F the following

identity holds

trT F̂ =

∫
P

∫
Q

F (q, p)WT (dqdp) (3)

(in finite-dimensional spaces the Wigner’s measure can

be substituted by its density, which is called the Wigner

function).

Remark 11. The measure W
Q
T on Q defined by

W
Q
T (dq) =

∫
P

WT (dqdp) is the (cylindrical) probability on

Q describing the distribution of results of measurements of

the coordinates.



To formulate the equation describing the evolution of the

Wigner measure we need a definition of what one could

call a function of the Poisson bracket. Below we use some

topological tensor powers of the phase space but we do not

discuss the topologies of them. We use the assumptions and

definitions of sections 3 and 4.

Let, for any n ∈ N, the symbol I⊗n denotes the mapping,

of a proper subspace of Bn(E), into E⊗n generated by n-

th tensorial power of I (here E⊗n is a topological tensor

product of n copies of E). Let moreover, for any two scalar

functions F and G on E,

{F, G}(n)(x) = F (n)(x)I⊗nG(n)(x)



and

L
(n)
G H(x) = {F, G}(n)(x)

(of course, Ln
G 6= L

(n)
G ). Finally let, for any a > 0, the

operator (sin)aLG be defined by

(sin)aLG =
∞∑

n=1

a2n−1

(2n − 1)!
L

(2n−1)
G

(we do not discuss now in which sense the series converges)

and let (sin)aL∗
G be the operator in a space of E∗-cylindrical

measures on E, which is adjoint to (sin)aLG.

Theorem 5. The dynamics of the Wigner measure is



governed by the following equation:

W ′
T (t) = 2(sin)

1

2
L∗
H(WT ).

The proof can be obtained by combination of technique of

the theory of differentiable measures and some methods of

developing equations describing the evolution of the Wigner

function [4], [5], [6].

Theorem 6. Let ν ∈ MG(E), {ek1
, ..., ekn

}, {er1
, ..., erm

} ⊂

B and let the Hamiltonian function H be Gr1,...,rm
-

cylindrical. If {er1
, ..., erm

} ⊂ {ek1
, ..., ekn

}, then

f
2(sin) 1

2
L∗
H

(ν)

k1,...,kn
(x) = 2(sin)

1

2
LH(f ν

k1,...,kn
)(x), x ∈ Gk1,...,kn

,

and if {es1
, ..., esp

} = {er1
, ..., erm

}\{ek1
, ..., ekn

} 6= ∅,



then f
2(sin) 1

2
L∗
H

(ν)

k1,...,kn
(x) =∫

2(sin)1
2LHr1,...,rm

(f ν
{r1,...,rm}∪{k1,...,kn}

)(...xs1
, ..., xsp

...)dxs1
...dxsp

.

Theorem 7. A function W (·) taking values in MG(E) is

a solution of the equation governing the dynamics of the

Wigner measure if and only if the functions t 7→ gr1,...,rn
(t),

defined by the equalities gr1,...,rn
(t) = f

2(sin) 1

2
L∗
H

(W (t))
r1,...,rn

satisfy

the following infinite system of differential equations:

g′k1,...,kn
(t)(·) =

∑ ∫
2(sin)

1

2
LHr1,...,rm

(g{r1,...,rm}∪{k1,...,kn}(t))(...xs1
, ..., xsp

...)dxs1
...dxsp

,

where the summation is over all finite sets {r1, ..., rm} of

natural numbers for which {r1, ..., rm} ∩ {k1, ..., kn} 6= ∅,



and, in accordance with what has been said above, if

{r1, ..., rm} ∩ {k1, ..., kn} = {r1, ..., rm}, then the integral

sign is assumed to be missing.

This follows from the theorems 5 and 6.

Suppose that the operator (sin)L∗
H is defined on M∞(E).

Theorem 8. Let, for every finite set {r1, ..., rn} of natural

numbers, gr1,...,rn
be a function of a real argument taking

values in the space of (bounded continuous) functions on

Fr1,...,rn
, and, for each t the family of functions gr1,...,rn

(t)

is compatible and determines a unique measure w(t) ∈

M∞(E). Then, the function w(·) is a solution of the

equation governing the dynamics of the Wigner measure,



if the family of functions gr1,...,rn
is a solution of the system

of equations

g′k1,...,kn
(t)(·) =

∞∑
m=1

(
∑

{r1,...,rm} ⊂{k1,...,kn}

2(sin)
1

2
LHr1,...,rm

(gk1,...,kn
(t))(·)+

+
∑

{j1,...,jp}={r1,...,rm}∩{k1,...,kn}

lim
N→∞

1

Nm−p

∑
{r1,...,rm}\{k1,...,kn}∩{1,...,N}∫

2(sin)
1

2
LHr1,...,rm

(g{r1,...,rm}∪{k1,...,kn}(t))(...xs1
, ..., xsm−p

...)dxs1
...dxsm−p

.

If it is not assumed that the Plank constant is equal to one

then it is necessary to substitute "2(sin)1
2" by "2

~
(sin)~

2",

where ~ is the Plank constant.



Remark 12. From Theorem 8, which is similar to theorem

4, one can deduce a quantum version of the classical

Bogolyubov system of equations and also some other similar

systems of equations. It is also worth noticing that the

integrals
∫

P
w(t)(dq, dp) are not probabilities and hence

(Remark 11) the measures w(t) are not Wigner measures.
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